
DATE: 4/01/97

CONTROLLING OFFICE FOR THIS DOCUMENT IS:
DIRECTOR, Army High Performance Computing
Research Center (AHPCRC)
Army Research Laboratory
Aberdeen, MD

POC: Director (Tayn E. Tezduyar)

DISTRIBUTION STATEMENT A: Public release

,' ottMOHOW ssxisassrxjK \
1 h&psoveQ tea QUSUC reisafiot j

AHPCRC Researchers Demonstrate Heterogeneous
Computing at Supercomputing '94

Wint 95

by Marek Behr (AHPCRC) and Alan Klietz (AHPCRC-MSCI)

Recent years have witnessed a vast increase in the number of
computing platforms which are available to computational
scientists. A multitude of design paths taken by the computer
manufacturers in their never-ending quest for high performance
and rapid programmability have resulted in a wide spectrum
of CPU, memory and storage architectures. The choice of the
optimal computational platform and algorithm for a given problem
on the part of the numerical analyst has become much more
important than in the past. While many applications
significantly benefit from their adaptation to parallel
distributed memory computers, some algorithms are inherently
non-parallelizeable. Some algorithms, when moved from a vector
supercomputer to a parallel architecture which they cannot fully
exploit, suffer major degradation in performance. In this case
the decision to continue the utilization of such algorithm on a
traditional supercomputer may be the correct one.

Large, complex, simulations may require many different algorithms
to perform the analysis, with sections of the code ranging from
embarrassingly parallel to unavoidably sequential. It is here
that the concept of heterogeneous computing may provide a welcome
alternative to months needed to replace the sequential code, or
to leaving the entire package, including the easily
parallelizeable portions, on a non-parallel machine. In
heterogeneous computation, many kinds of computers may cooperate,
with each of the machines performing tasks for which it is
particularly suited. The platforms exchange data utilizing a fast
network connection.

One example of an application which may benefit from the
heterogeneous computing approach is an implicit fluid flow
calculation with a finite element method. One of the major tasks
in this case is the construction of the (typically large) systems
of equations which represent the fluid unknowns. With a correct
selection of data structures and a proper initialization step,
this task can proceed concurrently for all elements of the grid,
exploiting the fine-grain parallelism inherent in the finite
element approach. Another time-consuming step is the solution of
the coupled equation systems. Iterative solution techniques,
which offer parallelization potential, can only be applied
in some of the cases. For some equation systems, e.g. those with
an extremely high condition number, a direct solution method
might be the only recourse. Unfortunately, implementation of such
methods on distributed memory computers still poses a challenge,
and using a vector machine for this step may be preferable.
Therefore, a heterogeneous program might be decomposed as

follows: a) the formation of the equation system takes place on a
massively parallel computer such as the CM-5, b) the components
of the system are transmitted to a vector machine such as the
Cray C90, where the system is assembled and solved, and c) the
solution is transmitted back to CM-5 and used to update the field
variables and begin the next iteration step.

There are numerous obstacles to seamless integration of such
diverse platforms as the CM-5 and C90. High data transfer rate
between the two machines is essential in order to avoid the
introduction of another bottleneck obstacle to high performance.
A High Performance Parallel Interface (HIPPI) network
interface, available on most high performance computers, provides
a bandwidth of 100 million bytes per second. This goes a long
way towards alleviating the bottleneck. A HIPPI connection links
the CM-5 and C90 operated by the Minnesota Supercomputer Center,
and is used by the AHPCRC researchers. Another problem stems
from the fact that binary floating-point data formats used by
different machines may be incompatible. In our example, the CM-5
employs the standard IEEE floating-point representation, the C90
uses a Cray-specific format, and the Cray T3D makes use of both
IEEE and Cray formats. Finally, the methods of accessing the
HIPPI interface are platform- and language-specific,
causing the codes that attempt to use the native HIPPI libraries
to become non-portable.

To simplify access to the heterogeneous computing engines, the
second author developed the HIPPI/RPC library. The library is
based on the Remote Procedure Call (RPC) concept. In this
concept, a program running on a local machine performs a
subroutine call that is executed on a remote machine. The actual
arguments included in the subroutine call are transferred over a
network connection to the remote machine, where they are accessed
as dummy arguments by the subroutine. After the remote machine
finishes execution of the subroutine, the modified values of the
dummy arguments are copied back to replace the arguments in the
local calling program. The specification of the remote procedure
can be expressed using standard Fortran 77 or Fortran 90
notation. The HIPPI/RPC library is designed to be easy to use,
allowing the rapid prototyping of new applications.

All data format conversion and translation, including floating-
point format conversion, is performed by the system. HIPPI/RPC
can be used on top of a variety of communication protocols and
hardware. HIPPI is preferred because of its high performance, but
TCP/IP over Ethernet or FDDI is also possible. The transport
selection can be performed at runtime.

In order to use the HIPPI/RPC interface, the following steps are
required: a) decomposition of the program into subroutines, some
of which are executed on one or more remote machines, b) creation
of a HIPPI/RPC Language (HRPCL) source file to declare the
arguments of the remote subroutines, c) compilation of the HRPCL
source file using the hrpcgen protocol compiler, d) compilation

of the hrpcgen-generated C and Fortran source files, along with
user files, into the master program on the local machine and the
server program on the remote machine. After starting the server
program, the master program can be run.

The aforementioned example of the finite element fluid flow
computation was used by AHPCRC researchers Tayfun Tezduyar,
Shahrouz Aliabadi and the first author, in collaboration with ARL
researchers Gloria Wren and Steve Ray, to demonstrate the
HIPPI/RPC capabilities at the Supercomputing 94 conference,
which took place in Washington, D.C. on November 15-17, 1994. The
simulation involved the flow inside a regenerative liquid
propellant gun (RLPG). The master program, a compressible flow
finite element code based on a stabilized space-time formulation,
ran on CM-5 and was coupled with a C90 implementation of a
skyline direct solver. The schematics of the RLPG, and the Mach
number field inside the combustion chamber at one instant during
the computation, is shown in Figure 1. Because of their
dependence on the direct solver, the RLPG simulations are
typically performed on the C90. The Supercomputing 94
demonstration showed the possibility of moving the majority of
the code to the potentially faster CM-5, while keeping the
modules which do not benefit from parallelism on the Cray C90.

To learn more about HIPPI/RPC, please refer to the "HIPPI/RPC
User's Guide", AHPCRC publication UG-0008 9/91 available from the
AHPCRC by calling (612) 626-1550 or sending an email, with a
request, staff@ahpcrc.umn.edu

